import os
import os.path as osp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt14 Dataset before COVID
data_wo_cov = "../data/Bayesianneuralnet_stockmarket/code/datasets"
data_wh_cov = "../data/Bayesianneuralnet_stockmarket/code/cov/data/"def get_orig(sig, shift=2):
"""
Retrieve original time series
"""
return np.concatenate((sig[0,:].ravel(), sig[1:,-shift:].ravel()))
def get_data(basename, dirname):
"""
Load stock matrix data
"""
return np.loadtxt(open(os.path.join(dirname, basename)))
def list_txt(dirname):
return [os.path.join(dirname,f) for f in os.listdir(dirname) if ".txt" in f]
def fname(path):
fn = os.path.basename(path)
name = fn.split(".")[0]
return name
def plot_stock(filepath, title=""):
data = np.loadtxt(filepath)
series = get_orig(data)
fig, ax = plt.subplots()
ax.plot(series)
ax.set_xlabel("Time")
ax.set_ylabel("A.U.")
if title=="":
ax.set_title(os.path.basename(filepath[:-4]))
else:
ax.set_title(title)
return fig, axfwocs = list_txt(data_wo_cov)
fwocs['../data/Bayesianneuralnet_stockmarket/code/datasets/CBA.AX_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/DAI.DE_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/DAI.DE_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/MMM8_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/CBA.AX_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/CBA.AX_1_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/DAI.DE_1_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/CBA.AX_1_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/MMM8_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/600118.SS_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/600118.SS_1_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/600118.SS_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/DAI.DE_1_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/datasets/600118.SS_1_train.txt']
fwhcs = list_txt(data_wh_cov)
fwhcs['../data/Bayesianneuralnet_stockmarket/code/cov/data/DAI.DE covid_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/600118.SS_covid_half_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/MMM covid_half_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/600118.SS_covid_half_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/DAI.DE covid_half_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/DAI.DE covid_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/CBA.AX covid_half_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/MMM_covid_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/600118.SS covid_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/DAI.DE covid_half_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/CBA.AX covid_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/MMM_covid_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/CBA.AX covid_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/600118.SS covid_train.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/MMM covid_half_test.txt',
'../data/Bayesianneuralnet_stockmarket/code/cov/data/CBA.AX covid_half_train.txt']
fwhcs[11]'../data/Bayesianneuralnet_stockmarket/code/cov/data/MMM_covid_train.txt'
for d in [fwocs[3], fwocs[8], fwhcs[7], fwhcs[11]]:
f, ax = plot_stock(d)
f.savefig("../img/{}.pdf".format(fname(d)), bbox_inches= "tight")


