=1; b=1
acurve(dgamma(x,a,b),0, 10)
3 Chapter 3: One-parameter models
3.1 Key messages
- One-parameter models
- Binomial model
- Poisson model
- Bayesian data analysis
- Conjugate prior distribution
- Predictive distribution
- Confidence regions
3.2 The binomial model
\[p(\theta|y) \propto p(y|\theta)\]
3.3 The beta distribution
\[p(\theta) = dbeta(\theta, a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1}\quad \text{for}~0\leq \theta\leq 1\]
- \(E[\theta]=\frac{a}{a+b}\)
- \(Var[\theta] = \frac{ab}{(a+b+1)(a+b)^2} = \frac{E[\theta]E[1-\theta]}{a+b+}\)
3.4 Inference for exchangeable binary data
If \(Y_{1},\dots,Y_n|\theta\) are i.i.d. binary (\(\theta\)):
\[p(\theta|y_1,\dots,y_n) = \frac{\theta^{\sum y_i}(1-\theta)^{n-\sum y_{i}} \times p(\theta)}{p(y_1,\dots,y_n)} \tag{3.1}\]
3.5 Sufficient statistics
If compare the relative probabilities of any two \(\theta\)-values, \(\theta_a\) and \(\theta_b\) (from Equation 3.1):
\[\frac{p(\theta_a|y_1,\dots,y_n)}{p(\theta_b|y_1,\dots,y_n)} = (\frac{\theta_{a}}{\theta_b})^{\sum y_i}(\frac{1-\theta_{a}}{1-\theta_b})^{n - \sum y_i}\frac{p(\theta_a)}{p(\theta_b)} \tag{3.2}\]
Equation 3.2 shows that
\[p(\theta\in A|Y_1=y_1,\dots,Y_n = y_n) = p(\theta \in A|\sum^{n}_{i=1} Y_i=\sum^{n}_{i=1}y_i)\]
\(\sum^{n}_{i=1} Y_i\) is a sufficient statistic for \(\theta\) and \(p(y_1,\dots,y_n|\theta)\). It is sufficient to know \(\sum Y_i\) to make inference about \(\theta\).
In this case where \(Y_1, \dots, Y_n|\theta\) are i.i.d. binary (\(\theta\)) random variables, the sufficient statistics \(Y=\sum^{n}_{i=1} Y_i\) has a binomial distribution with parameters \((n,\theta)\).
3.6 Conjugacy
- Beta prior and binomial sampling leads to beta posterior
- beta prior is conjugate for the binomial sampling.
- Conjugate priors make posterior calculations easy.
3.7 Combining information
If \(\theta|Y=y \sim beta(a+y, b+n-y)\), then
\[\begin{aligned} E[\theta|y] &=\frac{a+y}{a+b+n}\\ &= \frac{a+b}{a+b+n}\underbrace{\frac{a}{a+b}}_{\text{prior expectation}} + \frac{n}{a+b+n}\underbrace{\frac{y}{n}}_{\text{data average}}\\ \end{aligned} \tag{3.3}\]
From Equation 3.3, the posterior expectation is a weighted average of the prior expectation and the sample average. This leads to interpretation of \(a\) and \(b\) as “prior data”:
- \(a\): prior number of 1’s
- \(b\): prior number of 0’s
- \(a+b\): prior sample size
3.8 Predictive distribution
The predictive distribution of \(\tilde{Y}\) is the conditional distribution of \(\tilde{Y}\) given \(\{Y_1=y_1,\dots,Y_n=y_n\}\)
\[Pr(\tilde{Y}=1|y_1,\dots,y_n) = E[\theta|y_1,\dots,y_n] = \frac{a+\sum^{n}_{i=1}y_i}{a+b+n}\]
- Predictive distribution does not depend on any unknown quantities.
- Predictive distribution depends on our observed data.
3.9 Confidence regions
3.10 Binomial distribution
\[p(Y=y|\theta) = dbinom(y,n,\theta) = {n\choose y}\theta^{y}(1-\theta)^{n-y},\quad y\in\{0,1,\dots, n\}\]
3.11 The Poisson model
3.11.1 Posterior inference
Let \(Y_1,\dots,Y_n\) as i.i.d. Poisson with mean \(\theta\), then the joint pdf is
\[\begin{aligned} Pr(Y_1 =y_1,\dots, Y_n = y_n |\theta) &= \prod^{n}_{i=1} p(y_i|\theta)\\ &= \prod^{n}_{i=1} \frac{1}{y_{i}!} \theta^{y_i}e^{-\theta}\\ &= c(y_1, \dots, y_n)\theta^{\sum y_i}e^{-n\theta} \end{aligned}\]{#eq-pois-son}
3.12 Some one-parameter models
3.13 Bayesian prediction
3.13.1 The marginal
\[\begin{aligned} p(y) &= \int p(y,\theta)d\theta\\ &= \int_{\Theta}p(y|\theta)p(\theta)d\theta \end{aligned}\]3.13.2 Posterior predictive distribution
Let \(\bar{Y}\) be a data point that is yet to be observed.
\[\begin{aligned} p(\bar{y}|y) &= \int_{\Theta} p(\bar{y}, \theta|y)d\theta\\ &= \int_{\Theta} p(\bar{y}|\theta,y)p(\theta|y)d\theta \end{aligned}\]3.13.3 Sufficient statistics
Comparing two values of \(\theta\) a poseteriori,
\[\frac{p(\theta_a|y_1,\dots,y_n)}{p(\theta_b|y_1,\dots,y_n)} = \frac{e^{-n\theta_a}}{-n\theta_b}\frac{\theta_{a}^{\sum y_i}}{\theta_{b}^{\sum y_i}}\frac{p(\theta_a)}{p(\theta_b)}\]
3.13.4 Conjugate prior
\[p(\theta|y_1,\dots,y_n) \propto p(\theta) \times \underbrace{p(y_1,\dots,y_n|\theta)}_{\theta^{\sum y_i} e^{-n\theta}}\]
- \(\theta^{c_1}e^{-c_2 \theta}\): Gamma distribution
3.14 Jeffreys prior
3.15 Gamma Distribution
Conjuagate prior of Poisson data
\[p(\theta) = \frac{b^a}{\Gamma(a)}\theta^{a-1} e^{-b\theta}I_{0,\infty}(\theta)\]
- posterior of poisson data
\[E(\theta|y) = \frac{a+n\bar{y}}{b+n} = \frac{b}{b+n}\frac{a}{b} + \frac{n}{b+n}\frac{n\bar{y}}{n} = (1-\omega_n)E(\theta) + \omega_n \bar{y}\]
=4; b=4
acurve(dgamma(x,a,b),0, 10)
=16; b=4
acurve(dgamma(x,a,b),0, 10)
3.16 Exponential Families and conjugate priors
- \(p(y|\phi) = h(y)c(\phi)e^{\phi t(y)}\)
- \(\phi\) is unknown parameter
- \(t(y)\) is the sufficient statistic
- General exponential family models for particular prior
- \(p(\phi|n_0,t_0) = \kappa(n_0,t_0)c(\phi)^{n_0}e^{n_0 t_0 \phi}\)
- have to posterior distribution
\[\begin{align} p(\phi|y_1,\dots, y_n) &\propto p(\phi)p(y_1,\dots,y_n|\phi)\\ &\propto c(\phi)^{n_0 + n} \exp \left(\phi \times \left[ n_0 t_0 + \sum_{i=1}^{n}t(y_i) \right]\right)\\ &\propto p(\phi|n_0 +n, n_0t_0 +n \bar{t}(y)) \end{align}\]
where \(\bar{t}(y)=\frac{\sum t(y_i)}{n}\)
3.17 Mixture distribution
http://www.mas.ncl.ac.uk/~nmf16/teaching/mas3301/week11.pdf
3.18 Installation
R installation: https://www.drdataking.com/post/how-to-add-existing-r-to-jupyter-notebook/