5 Homework 1
5.1 Homework Description
Read Chapters 1 and 2 in the Hoff book. Then, do the following exercises in Hoff (p. 225-226): 2.1, 2.2, 2.3, 2.5 You must turn in your solutions as a pdf file here on Canvas. Use the Submit Assignment button on the top right. If your solutions are on paper, please scan them to pdf using a scanner or a scanner app on your phone. Please do not take a regular photo, as this can result in very large file sizes. Make sure that everything is legible. Please note that late homework will not be accepted and will result in a score of zero. To avoid late submissions due to technical issues, we recommend turning in your homework the night before the due date.
- Deadline: Sep. 8 by 12:01pm
- PDF version
5.2 Problem 2.1
Marginal and conditional probability: The social mobility data from Section 2.5 gives a joint probability distribution on \((Y_1, Y_2)=\) (fathers’s occupation, son’s occupation)
5.2.1 (a) The marginal probability distribution of a father’s occupation
According to Table 5.1, let \(\mathbb{Y_1}\) and \(\mathbb{Y_2}\) be sets of father’s and son’s occupations:
\[\mathbb{Y_1} = \mathbb{Y_2} = \{\text{farm},\text{operatives},\text{craftsmen},\text{sales},\text{professional}\}\]
\[ \begin{aligned} Pr(Y_1 = \text{farm}) &= \sum_{y_2\in\mathbb{Y_2}}Pr(Y_1= \text{farm} \cap Y_2=y_2)\\ &= Pr(Y_1= \text{farm} \cap Y_2=\text{farm}) + Pr(Y_1= \text{farm} \cap Y_2=\text{operatives}) \\ & +Pr(Y_1= \text{farm} \cap Y_2=\text{craftsmen}) + Pr(Y_1= \text{farm} \cap Y_2=\text{sales}) \\ & +Pr(Y_1= \text{farm} \cap Y_2=\text{professional})\\ &= 0.018 + 0.035 + 0.031 + 0.008 + 0.018\\ &= 0.11 \end{aligned} \]
\[ \begin{aligned} Pr(Y_1 = \text{operatives}) &= \sum_{y_2\in\mathbb{Y_2}}Pr(Y_1= \text{operatives} \cap Y_2=y_2)\\ &= Pr(Y_1= \text{operatives} \cap Y_2=\text{farm}) + Pr(Y_1= \text{operatives} \cap Y_2=\text{operatives}) \\ & +Pr(Y_1= \text{operatives} \cap Y_2=\text{craftsmen}) + Pr(Y_1= \text{operatives} \cap Y_2=\text{sales}) \\ & +Pr(Y_1= \text{operatives} \cap Y_2=\text{professional})\\ &= 0.002 + 0.112 + 0.064 + 0.032 + 0.069\\ &= 0.279 \end{aligned} \]
\[ \begin{aligned} Pr(Y_1 = \text{craftsman}) &= \sum_{y_2\in\mathbb{Y_2}}Pr(Y_1= \text{craftsman} \cap Y_2=y_2)\\ &= Pr(Y_1= \text{craftsman} \cap Y_2=\text{farm}) + Pr(Y_1= \text{craftsman} \cap Y_2=\text{operatives}) \\ & +Pr(Y_1= \text{craftsman} \cap Y_2=\text{craftsmen}) + Pr(Y_1= \text{craftsman} \cap Y_2=\text{sales}) \\ & +Pr(Y_1= \text{craftsman} \cap Y_2=\text{professional})\\ &= 0.001+0.066+0.094+0.032+0.084\\ &= 0.277 \end{aligned} \]
\[ \begin{aligned} Pr(Y_1 = \text{sales}) &= \sum_{y_2\in\mathbb{Y_2}}Pr(Y_1= \text{sales} \cap Y_2=y_2)\\ &= Pr(Y_1= \text{sales} \cap Y_2=\text{farm}) + Pr(Y_1= \text{sales} \cap Y_2=\text{operatives}) \\ & +Pr(Y_1= \text{sales} \cap Y_2=\text{craftsmen}) + Pr(Y_1= \text{sales} \cap Y_2=\text{sales}) \\ & +Pr(Y_1= \text{sales} \cap Y_2=\text{professional})\\ &= 0.001 + 0.018 + 0.019 + 0.010 + 0.051\\ &= 0.099 \end{aligned} \]
\[ \begin{aligned} Pr(Y_1 = \text{professional}) &= \sum_{y_2\in\mathbb{Y_2}}Pr(Y_1= \text{professional} \cap Y_2=y_2)\\ &= Pr(Y_1= \text{professional} \cap Y_2=\text{farm}) + Pr(Y_1= \text{professional} \cap Y_2=\text{operatives}) \\ & +Pr(Y_1= \text{professional} \cap Y_2=\text{craftsmen}) + Pr(Y_1= \text{professional} \cap Y_2=\text{sales}) \\ & +Pr(Y_1= \text{professional} \cap Y_2=\text{professional})\\ &= 0.001 + 0.029 + 0.032 + 0.043 + 0.130\\ &= 0.235 \end{aligned} \]
marginal probability | value |
---|---|
\(p(Y_1=\text{farm})\) | 0.11 |
\(p(Y_1=\text{operatives})\) | 0.279 |
\(p(Y_1=\text{craftsmen})\) | 0.277 |
\(p(Y_1=\text{sales})\) | 0.099 |
\(p(Y_1=\text{professional})\) | 0.235 |
SUM | 1.0 |
Table 5.2 shows that the sum of marginal probability is \(1\).
5.2.1.0.1 (b) The marginal probability distribution of a son’s occupation
\[ \begin{aligned} Pr(Y_2 = \text{farm}) &= \sum_{y_1\in\mathbb{Y_1}}Pr(Y_2= \text{farm} \cap Y_1=y_1)\\ &= Pr(Y_2= \text{farm} \cap Y_1=\text{farm}) + Pr(Y_2= \text{farm} \cap Y_1=\text{operatives}) \\ & +Pr(Y_2= \text{farm} \cap Y_1=\text{craftsmen}) + Pr(Y_2= \text{farm} \cap Y_1=\text{sales}) \\ & +Pr(Y_2= \text{farm} \cap Y_1=\text{professional})\\ &= 0.018 + 0.002 + 0.001 + 0.001 + 0.001\\ &= 0.023 \end{aligned} \]
\[ \begin{aligned} Pr(Y_2 = \text{operatives}) &= \sum_{y_1\in\mathbb{Y_1}}Pr(Y_2= \text{operatives} \cap Y_1=y_1)\\ &= Pr(Y_2= \text{operatives} \cap Y_1=\text{farm}) + Pr(Y_2= \text{operatives} \cap Y_1=\text{operatives}) \\ & +Pr(Y_2= \text{operatives} \cap Y_1=\text{craftsmen}) + Pr(Y_2= \text{operatives} \cap Y_1=\text{sales}) \\ & +Pr(Y_2= \text{operatives} \cap Y_1=\text{professional})\\ &= 0.035 + 0.112 + 0.066 + 0.018 + 0.029\\ &= 0.26 \end{aligned} \]
\[ \begin{aligned} Pr(Y_2 = \text{craftsmen}) &= \sum_{y_1\in\mathbb{Y_1}}Pr(Y_2= \text{craftsmen} \cap Y_1=y_1)\\ &= Pr(Y_2= \text{craftsmen} \cap Y_1=\text{farm}) + Pr(Y_2= \text{craftsmen} \cap Y_1=\text{operatives}) \\ & +Pr(Y_2= \text{craftsmen} \cap Y_1=\text{craftsmen}) + Pr(Y_2= \text{craftsmen} \cap Y_1=\text{sales}) \\ & +Pr(Y_2= \text{craftsmen} \cap Y_1=\text{professional})\\ &= 0.031 + 0.064 + 0.094 + 0.019 + 0.032\\ &= 0.24 \end{aligned} \]
\[ \begin{aligned} Pr(Y_2 = \text{sales}) &= \sum_{y_1\in\mathbb{Y_1}}Pr(Y_2= \text{sales} \cap Y_1=y_1)\\ &= Pr(Y_2= \text{sales} \cap Y_1=\text{farm}) + Pr(Y_2= \text{sales} \cap Y_1=\text{operatives}) \\ & +Pr(Y_2= \text{sales} \cap Y_1=\text{craftsmen}) + Pr(Y_2= \text{sales} \cap Y_1=\text{sales}) \\ & +Pr(Y_2= \text{sales} \cap Y_1=\text{professional})\\ &= 0.008+0.032+0.032+0.010+0.043\\ &= 0.125 \end{aligned} \]
\[ \begin{aligned} Pr(Y_2 = \text{professional}) &= \sum_{y_1\in\mathbb{Y_1}}Pr(Y_2= \text{professional} \cap Y_1=y_1)\\ &= Pr(Y_2= \text{professional} \cap Y_1=\text{farm}) + Pr(Y_2= \text{professional} \cap Y_1=\text{operatives}) \\ & +Pr(Y_2= \text{professional} \cap Y_1=\text{craftsmen}) + Pr(Y_2= \text{professional} \cap Y_1=\text{sales}) \\ & +Pr(Y_2= \text{professional} \cap Y_1=\text{professional})\\ &= 0.018+ 0.069+0.084+0.051+0.130\\ &= 0.352 \end{aligned} \]
marginal probability | value |
---|---|
\(p(Y_2=\text{farm})\) | 0.023 |
\(p(Y_2=\text{operatives})\) | 0.26 |
\(p(Y_2=\text{craftsmen})\) | 0.24 |
\(p(Y_2=\text{sales})\) | 0.125 |
\(p(Y_2=\text{professional})\) | 0.352 |
SUM | 1.0 |
Table 5.3 shows that the sum of marginal probability is \(1\).
5.2.2 (c) The conditional distribution of a son’s occupation, given that the father is a farmer;
The conditional distribution of a son’s occupation can be expressed as \(p(y_2 | y_1 = \text{farmer})\).
\[p(y_2= * | y_1 = \text{farmer}) = \frac{p(y_1=\text{farm} \cap y_2 = *)}{p(y_1 = \text{farm})}\]
where \(* \in \mathbb{Y_2}\). As described in Table 5.2, \(p(y_1=\text{farm})= 0.11\). Use Table 5.1 to calculate the distribution:
\[ \begin{aligned} p(y_2 = \text{farm} | y_1 = \text{farm}) &= \frac{0.018}{0.11} \approx 0.16\\ p(y_2 = \text{operatives} | y_1 = \text{farm}) &= \frac{0.035}{0.11} \approx 0.32\\ p(y_2 = \text{craftsman} | y_1 = \text{farm}) &= \frac{0.031}{0.11} \approx 0.28\\ p(y_2 = \text{sales} | y_1 = \text{farm}) &= \frac{0.008}{0.11} \approx 0.072\\ p(y_2 = \text{professional} | y_1 = \text{farm}) &= \frac{0.018}{0.11} \approx 0.16 \\ \end{aligned} \]
5.2.3 (d) The conditional distribution of a father’s occupation, given that the son is a farmer.
\[p(y_1= * | y_2 = \text{farm}) = \frac{p(y_1=\text{*} \cap y_2 = \text{farm})}{p(y_2 = \text{farm})}\]
According to Table 5.3, \(p(y_2 = \text{farm}) = 0.023\). Use Table 5.1 to calculate the distribution:
\[ \begin{aligned} p(y_1 = \text{farm} | y_2 = \text{farm}) &= \frac{0.018}{0.023} \approx 0.78\\ p(y_1 = \text{operatives} | y_2 = \text{farm}) &=\frac{0.002}{0.023} \approx 0.09\\ p(y_1 = \text{craftsman} | y_2 = \text{farm}) &= \frac{0.001}{0.023} \approx 0.04\\ p(y_1 = \text{sales} | y_2 = \text{farm}) &= \frac{0.001}{0.023} \approx 0.04\\ p(y_1 = \text{professional} | y_2 = \text{farm}) &= \frac{0.001}{0.023} \approx 0.04\\ \end{aligned} \]
5.3 Problem 2.2
Expectations and variances: Let \(Y_1\) and \(Y_2\) be two independent random variables, such that \(E[Y_i]=\mu_i\) and \(Var[Y_i] = \sigma_{i}^2\). Using the definition of expectation and variance, computing the following quantities, where \(a_1\) and \(a_2\) are given constants.
Because \(Y_1\) and \(Y_2\) are independent,
5.3.1 (a) \(E[a_1 Y_1 +a_2 Y_2]\), \(Var[a_1 Y_1 + a_2 Y_2]\)
Because \(Y_1\) and \(Y_2\) are independent: \[ E[Y_1 Y_2] = E[Y_1] E[Y_2] \]
Thus
\[ \begin{aligned} E[a_1 Y_1 + a_2 Y_2] &= E[a_1 Y_1] + E[a_2 Y_2]\\ &= a_1 E[Y_1] + a_2 E[Y_2]\\ &= \underline{a_1 \mu_1 + a_2 \mu_{2}}\\ \end{aligned} \]
\[ \begin{aligned} Var[a_1 Y_1 + a_2 Y_2] &= E[ [(a_1 Y_1 + a_2 Y_2) - E[a_1 Y_1 + a_2 Y_2]]^{2}]\\ &= E[(a_1 Y_1 + a_2 Y_2)^2] - E[a_1 Y_1 + a_2 Y_2]^2\\ &= E[a_{1}^{2}Y_{1}^{2} + 2a_1 a_2 Y_1 Y_2 + a_{2}^{2}Y_{2}^{2}] - (a_1 \mu_1 + a_2 \mu_2)^2\\ &= a^{2}_{1}E[Y_1^2] + 2a_1 a_2 \underbrace{\mu_1 \mu_2}_{E[Y_1 Y_2]=E[Y_1]E[Y_2]\quad \because \text{Indep.}} + a_{2}^{2}E[Y_{2}^{2}] - (a_1 \mu_1 + a_2 \mu_2)^2\\ &= a^{2}_{1}E[Y_1^2] + 2a_1 a_2\mu_1 \mu_2 + a_{2}^{2}E[Y_{2}^{2}] - (a_{1}^{2} \mu_{1}^{2}+ 2a_{1}a_{2}\mu_{1}\mu_{2} + a_{2}^{2} \mu_{2}^{2})\\ &= a_{1}^{2}(\underbrace{E[Y_{1}^2] - \mu_{1}^{2}}_{\sigma_{1}^{2}}) + a_{2}^{2}(\underbrace{E[Y^{2}_{2}] - \mu_{2}^{2}}_{\sigma_{2}^{2}})\\ &= \underline{a_{1}^{2}\sigma_{1}^{2} + a_{2}^{2}\sigma_{2}^{2}}\\ \end{aligned} \]
5.3.2 (b) \(E[a_1 Y_1 - a_2 Y_2]\), \(Var[a_1 Y_1 - a_2 Y_2]\)
\[ \begin{aligned} E[a_1 Y_1 - a_2 Y_2] &= E[a_1 Y_1] - E[a_2 Y_2]\\ &= a_1 E[Y_1] - a_2 E[Y_2]\\ &= \underline{a_1 \mu_1 - a_2 \mu_{2}}\\ \end{aligned} \]
\[ \begin{aligned} Var[a_1 Y_1 - a_2 Y_2] &= E[ [(a_1 Y_1 - a_2 Y_2) - E[a_1 Y_1 - a_2 Y_2]]^{2}]\\ &= E[(a_1 Y_1 - a_2 Y_2)^2] - E[a_1 Y_1 - a_2 Y_2]^2\\ &= E[a_{1}^{2}Y_{1}^{2} - 2a_1 a_2 Y_1 Y_2 + a_{2}^{2}Y_{2}^{2}] - (a_1 \mu_1 - a_2 \mu_2)^2\\ &= a_{1}^{2}E[Y^{2}_{1}] + a_{2}^{2}E[Y^{2}_{2}] - 2a_1 2_2 \underbrace{E[Y_1Y_2]}_{=E[Y_1]E[Y_2]\quad\because \text{Indep.}} - (a_1 \mu_1 - a_2 \mu_2)^2\\ &= a_{1}^{2}E[Y^{2}_{1}] + a_{2}^{2}E[Y^{2}_{2}] - 2a_1 2_2 \mu_1\mu_2 - (a_{1}^2 \mu_{1}^2 - 2 a_{1}a_{2}\mu_1 \mu_2 + a_{2}^{2} \mu_{2}^{2})\\ &= a_{1}^{2}(\underbrace{E[Y_{1}^2] - \mu_{1}^{2}}_{\sigma_{1}^{2}}) + a_{2}^{2}(\underbrace{E[Y^{2}_{2}] - \mu_{2}^{2}}_{\sigma_{2}^{2}})\\ &= \underbrace{a_{1}^{2}\sigma_{1}^{2} + a_{2}^{2}\sigma^{2}_{2}} \end{aligned} \]
5.4 Problem 2.3
Full conditionals: Let \(X\), \(Y\), \(Z\) be random variables with joint density (discrete or continuous) \(p(x,y,z) \propto f(x,z)g(y,z)h(z)\). Show that
5.4.1 (a) \(p(x|y,z) \propto f(x,z)\) i.e. \(p(x|y,z)\) is a function of \(x\) and \(z\);
Let \(c, d\in \mathbb{R}\) constants \[ \begin{aligned} p(x|y,z) &= \frac{p(x,y,z)}{p(y,z)}\\ &= \frac{c\cdot f(x,z)g(y,z)h(z)}{p(y,z)} &= \frac{c\cdot f(x,z)g(y,z)h(z)}{\int_{x\in\mathbb{X}} p(x,y,z)dx}\\ &= \frac{c\cdot f(x,z)g(y,z)h(z)}{d\cdot \int_{x\in \mathbb{X}} f(x,z)g(y,z)h(z) dx}\\ &= \frac{c\cdot f(x,z)g(y,z)h(z)}{d\cdot g(y,z)h(z)\int_{x\in \mathbb{X}} f(x,z) dx}\\ &= \frac{c\cdot f(x,z)}{d\cdot\int_{x\in \mathbb{X}} f(x,z) dx}\\ &\propto \underline{\frac{f(x,z)}{\int_{x\in \mathbb{X}} f(x,z) dx}} \end{aligned} \]
Thus, \(p(x|y,z)\) is a function of \(f(x,z)\).
5.4.2 (b) \(p(y|x,z) \propto g(y,z)\) i.e. \(p(y|x,z)\) is a function of \(y\) and \(z\);
Let \(c, d\in \mathbb{R}\) constants \[ \begin{aligned} p(y|x,z) &= \frac{p(x,y,z)}{p(x,z)}\\ &= \frac{p(x,y,z)}{\int_{y\in \mathbb{Y}}p(x,y,z)dy}\\ &= \frac{c\cdot f(x,z)g(y,z)h(z)}{d\cdot \int_{y\in\mathbb{Y}} f(x,z)g(y,z)h(z)dy}\\ &= \frac{c\cdot f(x,z)g(y,z)h(z)}{d\cdot f(x,z)h(z)\int_{y\in\mathbb{Y}} g(y,z)dy}\\ &\propto \frac{f(y,z)}{\int_{y\in\mathbb{Y}}g(y,z)dy}\\ \end{aligned} \]
5.4.3 (c) \(X\) and \(Y\) are conditionally independent given \(Z\).
Let \(a_1, a_2 \in \mathbb{R}\) constant,
\[ \begin{aligned} p(x|z) &= \frac{p(x,z)}{p(z)}\\ &= \frac{\int_{y\in\mathbb{Y}}p(x,y,z)dy}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} p(x,y,z) dydx}\\ &= \frac{\int_{y\in\mathbb{Y}}f(x,z)g(y,z)h(z) dy}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} p(x,y,z) dydx}\\ &= \frac{f(x,z)h(z)\int_{y\in\mathbb{Y}}g(y,z)dy}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} p(x,y,z) dydx}\\ &= \frac{f(x,z)\int_{y\in\mathbb{Y}}g(y,z)dy}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} f(x,z)g(y,z) dydx} \end{aligned} \]
\[ \begin{aligned} p(y|z) &= \frac{p(y,z)}{p(z)}\\ &= \frac{\int_{x\in\mathbb{X}}p(x,y,z)dx}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} p(x,y,z) dydx}\\ &= \frac{\int_{x\in \mathbb{X}} f(x,z)g(y,z)h(z) dx}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} p(x,y,z) dydx}\\ &= \frac{g(y,z)h(z)\int_{x\in \mathbb{X}} f(x,z)dx}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} p(x,y,z) dydx}\\ &= \frac{g(y,z)\int_{x\in \mathbb{X}} f(x,z)dx}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} f(x,z)g(y,z) dydx}\\ \end{aligned} \]
\[ \begin{aligned} p(x|z)p(y|z) &= \frac{f(x,z)\int_{y\in\mathbb{Y}}g(y,z)dy}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} f(x,z)g(y,z) dydx} \cdot \frac{g(y,z)\int_{x\in \mathbb{X}} f(x,z)dx}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} f(x,z)g(y,z) dydx}\\ &= \frac{f(x,z)g(y,z)}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} f(x,z)g(y,z) dydx}\\ \end{aligned} \]
\[ \begin{aligned} p(x,y|z) &= \frac{p(x,y,z)}{p(z)}\\ &= \frac{f(x,z)g(y,z)h(z)}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} p(x,y,z) dy dx}\\ &= \frac{f(x,z)g(y,z)h(z)}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} f(x,z)g(y,z)h(z) dy dx}\\ &= \frac{f(x,z)g(y,z)h(z)}{\int_{x\in\mathbb{X}}f(x,z)h(z)\left[\int_{y\in\mathbb{Y}} g(y,z) dy\right] dx}\\ &= \frac{f(x,z)g(y,z)h(z)}{\int_{x\in\mathbb{X}}f(x,z)h(z)dx \cdot \int_{y\in\mathbb{Y}} g(y,z) dy}\\ &= \frac{f(x,z)}{\int_{x\in\mathbb{X}}f(x,z)dx}\frac{g(y,z)}{\int_{y\in\mathbb{Y}} g(y,z) dy}\\ &= \frac{f(x,z)g(y,z)}{\int_{x\in\mathbb{X}}\int_{y\in\mathbb{Y}} f(x,z)g(y,z) dydx}\\ &= \underline{p(x|z)p(y|z)}\\ \end{aligned} \]
Thus, \(p(x,y|z) = p(x|z)p(y|z)\) that means \(p(x,y|z)\) is conditionally independent given \(z\).
5.5 Problem 2.5
Urns: Suppose urn \(H\) is filled with \(40\%\) green balls and \(60\%\) red balls, and urn \(T\) is filled with \(60\%\) green balls and \(40\%\) red balls. Someone will flip a coin and then select a ball from urn \(H\) or urn \(T\) depending on whether the coin lands heads or tails, respectively. Let \(X\) be 1 or 0 if the coin lands heads or tails, and let \(Y\) be \(1\) or \(0\) if the ball is green or red.
Green | Red | |
---|---|---|
\(H\) (chosen if head[1]) | 0.4 | 0.6 |
\(T\) (chosen if tail[0]) | 0.6 | 0.4 |
1 | 0 | |
---|---|---|
\(X\) | Head | Tail |
\(Y\) | Green | Red |
5.5.1 (a) Write out the joint distribution of \(X\) and \(Y\) in a table.
Suppose the coin is fair,
\[ \begin{aligned} p(X=0 \cap Y=0) &= p(X=0) p(Y=0|X=0)= 0.5\cdot 0.4 = 0.2\\ p(X=0 \cap Y=1) &= p(X=0) p(Y=1|X=0)= 0.5\cdot 0.6 = 0.3\\ p(X=1 \cap Y=0) &= p(X=1) p(Y=0|X=1)= 0.5\cdot 0.6 = 0.3\\ p(X=1 \cap Y=1) &= p(X=1) p(Y=1|X=1)= 0.5\cdot 0.4 = 0.2\\ \end{aligned} \]
5.5.2 (b) Find \(E[Y]\). What is the probability that the ball is green?
\[ \begin{aligned} E[Y] &= \sum_{y\in \{0,1\}} p(Y=y)y\\ &= p(Y=1)\cdot 1\\ &= \sum_{x\in\{0,1\}} p(Y=1 | X=x)p(X=x)\\ &= p(Y=1|X=0)p(X=0) + p(Y=1|X=1)p(X=1)\\ &= 0.6\cdot 0.5 + 0.4 \cdot 0.5 \\ &= 0.3 + 0.2 \\ &= 0.5 \end{aligned} \]
5.5.3 (c) Find \(Var[Y|X=0]\), \(Var[Y|X=1]\) and \(Var[Y]\). Thinking of variance as measuring uncertainty, explain intuitively why one of these variances is larger than others.
\[ \begin{aligned} E[Y|X=0] &= \sum_{y \in\{0,1\}} P_{Y|X=0}(Y=y|X=0)y\\ &= P_{Y|X=0}(Y=1|X=0)\cdot 1 \\ &= 0.6 \end{aligned} \]
\[ \begin{aligned} E[(Y|X=0)^2] &= \sum_{y \in\{0,1\}} P_{Y|X=0}(Y=y|X=0)y^2\\ &= P_{Y|X=0}(Y=1|X=0)\cdot 1 \\ &= 0.6 \end{aligned} \]
\[ \begin{aligned} E[Y|X=1] &= \sum_{y \in\{0,1\}} P_{Y|X=1}(Y=y|X=1)y\\ &= P_{Y|X=1}(Y=1|X=1)\cdot 1 \\ &= 0.4 \end{aligned} \]
\[ \begin{aligned} E[(Y|X=1)^2] &= \sum_{y \in\{0,1\}} P_{Y|X=0}(Y=y|X=1)y^2\\ &= P_{Y|X=1}(Y=1|X=1)\cdot 1 \\ &= 0.4 \end{aligned} \]
\[ \begin{aligned} E[Y^2] &= \sum_{y\in\{0,1\}} P(Y=y)y^2\\ &= P(Y=1)\cdot 1^2\\ &= P(Y=1 \cap X=1) + P(Y=1 \cap X=0)\\ &= 0.2 + 0.3 = 0.5\\ \end{aligned} \]
Thus,
\[Var[Y|X=0] = E[(Y|X=0)^2] - E[Y|X=0]^2 = 0.6 - 0.6^2 = \underline{0.24}\] \[Var[Y|X=1] = E[(Y|X=1)^2] - E[Y|X=1]^2 = 0.4 - 0.4^2 = \underline{0.24}\]
\[Var[Y] = E[Y^2] - E[Y]^2 = 0.5 - 0.5^2 = \underline{0.25}\]
Explaination
\(Var[Y]\) is larger than \(Var[Y|X=0]\) and \(Var[Y|X=1]\) because \(Y\) can be more determined by the information of \(X\). With known \(X\), the distribution of \(Y\) is set, and less uncertain with single confirmed distribution.
5.5.4 (d) Suppose you see that the ball is green. What is the probability that the coin turned up tails?
\[\begin{aligned} p(X=0 | Y=1) &= \frac{p(X=0 \cap Y=1)}{p(Y=1)}\\ &= \frac{p(X=0 \cap Y=1)}{p(Y=1 | X=0)p(X=0) + p(Y=1|X=1)p(X=1)}\\ &= \frac{0.5 \cdot 0.6}{0.6\cdot 0.5 + 0.4\cdot 0.5}\\ &= \frac{0.3}{0.3+0.2}\\ &= \frac{0.3}{0.5}\\ &= \underline{0.6}\\ \end{aligned}\]